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1 Introduction: a path to Montonen-Olive duality

Among recent developments on effective actions of multiple M2-branes, one of the surprising

outputs is the non-abelian duality. In 3 dimensions, it has been known for more than

a decade that the action of a single M2-brane can be dualized classically to that of a

D2-brane [2]: an abelian duality between scalar field theory and 3d electromagnetism.

Based on Bugger-Lambert-Gustavsson (BLG) model [3, 4] of multiple M2-brane, Mukhi

and Papageorgakis have obtained a quite intriguing non-abelian duality [5], a relation

between field theories on multiple M2-branes and D2-branes. In this paper, we generalize

their result and find a novel mechanism which will be a step toward a proof of renowned
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Montonen-Olive (MO) duality conjectured [1] for 4d N = 4 U(N) supersymmetric Yang-

Mills (SYM) theory.

The method of [5] is as follows. First, one of the eight transverse fields is given a vacuum

expectation value (vev) v, which turns out to provide mass terms for a non-dynamical part

of the gauge fields in Chern-Simons (CS) terms. Integrating massive modes out, one gets

rightly a YM kinetic term of D2-branes.

As pioneered by Aharony, Bergman, Jafferis and Maldacena (ABJM) [6], following the

renormalization group (RG), certain N = 3 3d CSYM theories flow to N = 6 superconfor-

mal field theories (SCFTs) at IR fixed point, which precisely describe M2-branes probing

C4/Zk (k > 2) where k is the CS level. Equipped with these, the need for a vev then gets

clarified geometrically. Under the scaling limit [7]:

v → ∞, k → ∞, v/k : fixed, (1.1)

one yields exactly a circle compactification, i.e. the M-theory circle is created in the above

limit and D2-branes appear thereof. It is highly non-trivial that this mechanism requires

CS terms which in turn give an orbifold moduli space.

Let us extend the step further to 4-dimensional theories.

Our result shows a perfect consistency with M-theory considerations. Generally, MO

duality changes the gauge group, but in the case of U(N) it remains the same.1

Let us summarize how the N = 4 SYM, the M2-branes and MO duality are related to

each other. As is well known, the axio-dilaton τ of Type IIB supergravity coincides with

the gauge coupling of the N = 4 SYM, realized on N coincident D3-branes at low energy.

MO duality is then identified with the S-duality of Type IIB string theory. In terms of

M-theory, τ is interpreted as the complex structure of a two-torus formed by (x9, x11) such

that the S-duality gets readily identified with the SL(2,Z) modular transformation. Also,

via duality chains, M2-branes transverse to the above two-torus with shrinking size and

fixed τ guarantee that the above D3-branes they are dual to are non-compact.

To get a torus, it is insufficient to just dwell in the present ABJM model. We make use

of a generalized version studied by [9–11]. It is this CS-matter theory with product gauge

group (U(N))2n that comes to our rescue. The standard orbifolding action of Douglas and

Moore [12] has been applied to the ABJM model [10] to obtain the generalized action.2

As shown in [11], it is also possible to prepare a IIB brane setup which flows to the same

theory at IR fixed point. Viewed from M-theory, this describes N M2-branes probing an

abelian orbifold C4/Γ where Γ = Zn × Zkn.

We then turn on vevs (v, ṽ) of two scalars and make a torus using instead the scal-

ing limit:

v, ṽ, n → ∞, vṽ/n → 0, v/ṽ : fixed, k : fixed, (1.2)

which carries out the shrinking size with fixed τ . Our field theory result shows that a

4d SCFT (SYM theory) emerges from a 3d SCFT (generalized ABJM model) as desired.

1For an introduction, see review articles [8] and references therein.
2 Orbifolding the ABJM model was first considered in [13].
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Methods for uplifting dimensions are basically Taylor’s T-duality [14] and deconstruction

of extra dimensions [15]. See section 3 for details.

With the SYM obtained, we go further to analyze MO duality. It is found that there

are infinitely many equivalent SYMs derived from the same generalized ABJM action.

But eventually they differ merely up to SL(2,Z) redefinition of τ . This provides a proof

of duality under some SL(2,Z) transformations. Relabeling CS gauge fields gives rise to

many SYMs. In particular, one relabeling is to exchange v and ṽ, i.e. this resembles the

M-theory 9-11 flip, as two vevs create the torus.

However, τ in fact depends only on the ratio v/ṽ, which forms a one-parameter family.

This constraint rather implies that the S-transformation (τ → −τ−1) found between gauge

couplings can be thought of as a parity transformation in 4 dimensions. Thus generic

(truely strong-weak dual) S-transformations are not shown in our work. It is, however,

important that a part of the SL(2,Z) transformation is realized in the field theoretical

framework via the M2-brane action. Thus we think our work can be a step toward a proof

of the MO duality via M2-branes.

The organization of this paper is as follows. In the next section we briefly review the

non-abelian duality of [5] and apply it to the ABJM model. Then, section 3 is devoted

to deriving 4d SYM (3.40) from the generalized ABJM action (3.1). In section 4, we

obtain infinitely many SYMs from one parent model and find their gauge couplings are

related by SL(2,Z) transformation. This manifests MO duality henceforth. Certainly, our

gauge coupling is in perfect accordance with the M-theory picture. Finally, we conclude in

section 5.

2 Review: Scaling limit of orbifold and S1 compactification

The ABJM model [6] is a 3d N = 6 U(N) × U(N) CS-matter theory. It is conjectured to

describe N M2-branes probing C4/Zk. In this section, after reviewing the ABJM model, we

discuss the relation between the scaling limit of an orbifold and the circle compactification.

This interesting mechanism giving a 3d YM theory is a la Mukhi et al. [5, 7].

An ultraviolet Type IIB brane configuration realizing N = 3 U(N) × U(N) quiver

YMCS theory in 3 dimensions is first given by [6]. At low energy, it flows to a strongly-

coupled N = 6 SCFT. The bosonic part of the ABJM action is

S =

∫

d3x

[

k

4π
ǫµνλtr

(

A(1)
µ ∂νA

(1)
λ +

2i

3
A(1)

µ A(1)
ν A

(1)
λ − A(2)

µ ∂νA
(2)
λ − 2i

3
A(2)

µ A(2)
ν A

(2)
λ

)

−tr
(

(DµZA)†DµZA
)

− tr
(

(DµW A)†DµWA

)

− V (Z,W )

]

, (2.1)

where A = 1, 2, and kinetic terms of adjoint fields decouple due to g2
YM → ∞. The covariant

derivatives for bi-fundamental matters are

DµZA = ∂µZA + iA(1)
µ ZA − iZAA(2)

µ , (2.2)

DµW A = ∂µW A + iA(2)
µ W A − iW AA(1)

µ . (2.3)

– 3 –
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Our normalization is tr[T aT b] = 1
2δab for the U(N) generators T a. The moduli space is

(C4/Zk)
N/SN . When the CS level k is 1 or 2, the supersymmetries are expected to enhance

to full N = 8. We will not treat fermions in this paper, for simplicity.

2.1 Orbifold to S1 compactification

We turn on a vev for one of the scalar fields, say, Z1:

Z1 = v1N×N (2.4)

where v is real and positive, and 1N×N is N ×N unit matrix. The vevs of the other scalar

fields are set to zero. Basically, v measures how far it is from the orbifold fixed point to

the coincident N M2-branes.3 Note that Z has dimension 1/2, so the distance is given by

vl
3/2
P where lP is the Planck length in 11d M-theory. The ABJM action describes a low

energy limit lP → 0 of the N M2-branes with the transverse target space C4/Zk.

It was discussed in [5] that taking a large value of the vev v is equivalent to obtaining

a system of multiple D2-branes.4 This was a first example of non-Abelian duality in 3

dimensions, as one can trade the non-Abelian degrees of freedom of the adjoint scalar field

ImZ1 with its dual non-Abelian gauge field Aµ. The elimination of the scalar field promotes

the CS gauge field to a dynamical YM gauge field.

The discussion of [5] was somewhat mysterious, as there seems to be no M-theory

circle to make a reduction from M-theory to the Type IIA string theory. This problem was

clarified in [7] by taking the limit (1.1). In this limit, the orbifold angle gets smaller as the

location of the M2-branes is translated far away from the orbifold fixed point, while the

distance from the M2-branes to their orbifold copy is fixed to be 2πvl
3/2
P /k. Since in the

limit the orbifold fixed point is very far away from the M2-brane location, this is effectively

the same as the standard S1 compactification.

This is a clever way to create (by hand) a compactification circle by a scaling limit

of an orbifold which breaks translational invariance. In the limit of shrinking the circle

radius, the M2-brane system is expected to reduce to the system of N D2-branes. This

was explicitly shown in [7]: the BLG model in this limit reduces to a 3d SYM, the effective

action of the D2-branes.

In [7], the BLG model does not describe N M2-branes, so we shall use the ABJM

model. Next we demonstrate, in the limit (1.1), how the ABJM model with U(N)×U(N)

gauge group reduces to the U(N) SYM, as an exercise for later convenience.

2.2 ABJM to 3d YM

The expectation value (2.4) inserted to the scalar kinetic terms in (2.1) produces mass

terms for the gauge fields. The scalar fields are in the bi-fundamental representation, so

we choose the following redefined gauge fields:

A(±)
µ ≡ 1

2

(

A(1)
µ ± A(2)

µ

)

. (2.5)

3 This can be seen from the moduli space metric of the moduli space C
4/Zk, which is flat if measured

by this v.
4 Precisely speaking, this limit is to consider F ≪ k2/v4, as will be explained in (2.11).

– 4 –
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The mass term arising from the scalar kinetic term is

Smass = −
∫

d3x tr
[

{A(−)
µ , v}2

]

= −
∫

d3x 4v2tr
[

(A(−)
µ )2

]

. (2.6)

In terms of (2.5), the CS terms in the ABJM action (2.1) are written as

ǫµνλtr
[

A(1)
µ ∂νA

(1)
λ − A(2)

µ ∂νA
(2)
λ

]

= ǫµνλtr
[

A(+)
µ ∂νA

(−)
λ

]

, (2.7)

ǫµνλtr
[

A(1)
µ A(1)

ν A
(1)
λ − A(2)

µ A(2)
ν A

(2)
λ

]

= 2ǫµνλtr
[

3A(+)
µ A(+)

ν A
(−)
λ + A(−)

µ A(−)
ν A

(−)
λ

]

,

up to a total derivative. Then, the CS terms are

SCS =

∫

d3x
k

2π
ǫµνλtr

[

A(−)
µ F

(+)
νλ +

2i

3
A(−)

µ A(−)
ν A

(−)
λ

]

, (2.8)

with the field strength

F
(+)
νλ ≡ ∂νA

(+)
λ − ∂λA(+)

ν + i[A(+)
ν , A

(+)
λ ]. (2.9)

From Smass + SCS ((2.8)+(2.6)), it is obvious that A
(−)
µ is an auxiliary field and can

be integrated out. We treat the cubic term in (2.8) as a perturbation, as it turns out to

be decoupled in the limit (1.1). The equation of motion for A
(−)
µ is (if the cubic term is

neglected)

A(−)
µ =

k

16πv2
ǫµνλF (+)νλ. (2.10)

Substituting this back to the action, we obtain

S = −
∫

d3x
k2

32π2v2
tr
[

(F (+)
µν )2

]

+
k4

v6
O((F (+))3). (2.11)

We have used ηµνǫµρλǫνστ = −(ηρσηλτ − ηρτησλ). The F 3 term in this action is from the

cubic interaction (A(−))3 in (2.8), whose coefficient goes to zero in the limit (1.1). So we

obtain a 3d YM with a finite gauge coupling

lim
k,v→∞

k2

32π2v2
=

1

2g2
YM

. (2.12)

The important and basic mechanism here is that the CS gauge field is upgraded to a

dynamical YM field through Higgsing one scalar field.5 We use this mechanism throughout

the paper.

In the above, we substituted the result of the classical equation of motion (2.10) into

the action classically. However, this can be justified fully at the quantum level, because

the field which is eliminated is just and auxiliary field. To be concrete, one can show that

integrating out the field A
(−)
µ in the path integral approach is equivalent to just substituting

the result of the classical equation of motion back to the action.

5To maintain the total degrees of freedom, one of the scalar field should go away from the system.

Interestingly, one can find that the kinetic term for the imaginary part of Z1 disappears with the vev of

the real part.

– 5 –
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3 Generalized ABJM to 4d YM

3.1 Generalized ABJM

In order to have D3-branes, we need to compactify M-theory on a shrinking torus transverse

to M2-branes. Instead of the circle compactification (1.1), here we need another circle to

make the torus. To gain another circle, a different orbifold with large order is necessary.

We make use of the generalized ABJM model which was studied in [9–11] for our purpose.

The standard orbifolding action of Douglas and Moore [12] has been applied to the ABJM

model to obtain the generalized action (ver. 2 of [10]). Alternatively, a Type IIB brane

realization leading to same theory in the IR limit is given in [11]. The generalized ABJM

model is characterized by a longer quiver diagram (figure 1). It was shown in [10, 11] that

this theory has a more general moduli space C4/Γ, as expected.

In this section, we show that, in a similar limit of the orbifold and expectation values

of the scalar fields, the generalized ABJM model is equivalent classically to a 4d N = 4

SYM theory.

The bosonic part of the generalized ABJM action is [9–11]:6

S =

∫

d3x

[

k

4π
ǫµνλ

n
∑

l=1

tr

(

A(2l−1)
µ ∂νA

(2l−1)
λ +

2i

3
A(2l−1)

µ A(2l−1)
ν A

(2l−1)
λ

−A(2l)
µ ∂νA

(2l)
λ − 2i

3
A(2l)

µ A(2l)
ν A

(2l)
λ

)

−tr

2n
∑

s=1

(

(DµZ(s))†DµZ(s) + (DµW (s))†DµW (s)
)

− V (Z,W )

]

. (3.1)

The definition of the covariant derivative is

DµZ(2l−1) = ∂µZ(2l−1) + iA(2l−1)
µ Z(2l−1) − iZ(2l−1)A(2l)

µ , (3.2)

DµZ(2l) = ∂µZ(2l) + iA(2l)
µ Z(2l) − iZ(2l)A(2l+1)

µ , (3.3)

DµW (2l−1) = ∂µW (2l−1) + iA(2l)
µ W (2l−1) − iW (2l−1)A(2l−1)

µ , (3.4)

DµW (2l) = ∂µW (2l) + iA(2l+1)
µ W (2l) − iW (2l)A(2l)

µ . (3.5)

When n = 1, this reduces to the original ABJM action. The quiver diagram is a simple

one shown in figure 1. It is a standard quiver diagram except for the fact that the sign of

the CS level is opposite for two adjacent nodes.

The moduli space of this generalized ABJM model is C4/(Zn × Znk) [10, 11], for

N = 1 (a single M2-brane). For general N , the moduli space is N copies of it, (C4/(Zn ×
Znk))

N/SN . Due to the parameterization given there, the following point in the mod-

uli space,

Z(2l−1) = v1N×N , Z(2l) = ṽ1N×N , W (2l−1) = W (2l) = 0 (l = 1, · · · , n), (3.6)

6The lagrangian written here is the one described in [9]. We can think of this as case II in [10], or

the theory of [11] with nA = nB , in their notations respectively. The corresponding Type IIB brane

configuration, which was studied in [11], has n NS5-branes and n (k, 1) 5-branes which are placed pairwise,

adjacent to one another, on an S1 which N D3-branes are wrapping. Under the RG flow, 3d CS-matter

quiver gauge theory (3.1) appears at the IR fixed point.

– 6 –
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W (2l−1) W (2l) W (2l+1)

A(2l)A(2l−1) A(2l+2)A(2l+1)

Figure 1. Quiver diagram of the generalized ABJM model. The quiver forms a circle with 2n nodes.

is expected to give a torus compactification, once the limit (1.2) is taken. The values v/n

and ṽ/n should be associated with radii of the transverse T 2. We will see this in section 4.

The torus shrinks to a point in the limit (1.2) (while the complex structure is kept), such

that Type IIB string theory dual to M-theory has decompactified 10 dimensions. So we

can expect that the limit (1.2) will bring the generalized ABJM model to a SYM on a

decompactified 4 dimensions.

3.2 Generalized ABJM to 4d YM

In this subsection, we demonstrate how the 4d YM action is obtainable from the generalized

ABJM model, in the limit (1.2), via two steps.7

• Consider linear combinations of the gauge fields labeled by (+) and (−), and then

integrate out the auxiliary field A(−) to obtain the YM kinetic term. At this stage, the

theory is 3-dimensional. This step is quite similar to the one considered in section 2.2

for the original ABJM model.

• Accumulate n (→ ∞) YM fields to form a 4d theory via the familiar field-theoretical

realization of T-duality formulated by Taylor [14] and deconstruction of extra dimen-

sions [15].

The first step basically corresponds to considering the M-theory circle to obtain the D2-

brane action (though the number of the D2-branes is n → ∞ in our case). The second step

is for T-dualizing the D2-branes in the covering space of S1.

3.2.1 The first step: CS → 3d YM

To perform the first step described above, we introduce the following definition of the linear

combination of the gauge fields,

A(±)(2l−1)
µ ≡ 1

2

(

A(2l−1)
µ ± A(2l)

µ

)

. (3.7)

Precisely as in section 2.2, the CS part in (3.1) reads with the definition (3.7) as

S = SCS + Smass (3.8)

SCS =

∫

d3x

n
∑

l=1

k

2π
ǫµνλ

n
∑

l=1

tr

[

A(−)(2l−1)
µ F

(+)(2l−1)
νλ +

2i

3
A(−)(2l−1)

µ A(−)(2l−1)
ν A

(−)(2l−1)
λ

]

.

7 We focus only on gauge kinetic terms. Scalar field parts should be shown in a straightforward manner,

so we will not elaborate on it.

– 7 –
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With the vev (3.6), we get the mass term from (3.1) (scalar fluctuations are neglected)

Smass = −
∫

d3x
n
∑

l=1

tr
[

v2(A(2l−1)
µ − A(2l)

µ )2 + ṽ2(A(2l)
µ − A(2l+1)

µ )2
]

.

= −
∫

d3x
n
∑

l=1

tr

[

4v2(A(−)(2l−1)
µ )2 (3.9)

+ṽ2
(

(A(+)(2l−1)
µ − A(+)(2l+1)

µ ) − (A(−)(2l−1)
µ + A(−)(2l+1)

µ )
)2
]

.

For our later purpose we define mass matrices as

Smass =

∫

d3x

n
∑

l,l′=1

tr
[

A(−)(2l−1)
µ M

(−)
ll′ A(−)(2l′−1)µ (3.10)

+A(−)(2l−1)
µ M

(cross)
ll′ A(+)(2l′−1)µ + A(+)(2l−1)

µ M
(+)
ll′ A(+)(2l′−1)µ

]

.

For reproducing (3.9), we define

M (−) ≡ −4(v2 + ṽ2)1n×n + 2ṽ2Λ, M (cross) ≡ 2ṽ2(Ω − Ω−1), M (+) ≡ (−ṽ2)Λ,

Λ ≡ 21n×n − (Ω + Ω−1). (3.11)

The matrix Ωij ≡ δi+1,j is the standard n×n shift matrix, with the indices in the definition

δi+1,j should be understood mod n. 1n×n is the unit matrix of the size n × n.

It is clear that A(+)(2l−1) is just an auxiliary field and can be integrated out. The mass

term (3.9) is a little complicated, so in this subsection we consider a simplified situation

v ≫ ṽ. (3.12)

In the next subsection we deal with generic v and ṽ. For v ≫ ṽ, we can neglect ṽ2(A(−))2

and the cross terms ṽ2A(−)A(+). Furthermore, as in section 2.2, we can ignore (A(−))3

term because it vanishes when v → ∞ after A(+) is integrated out. The action simplifies to

S =

∫

d3x

n
∑

l=1

tr

[

k

2π
ǫµνλ

(

A(−)(2l−1)
µ F

(+)(2l−1)
νλ

)

− 4v2(A(−)(2l−1)
µ )2 − ṽ2

(

A(+)(2l−1)
µ − A(+)(2l+1)

µ

)2
]

. (3.13)

The equation of motion for the auxiliary field A(−)(2l−1) is

A(−)(2l−1)
µ =

k

16πv2
ǫµνλF (+)(2l−1)νλ, (3.14)

and we substitute this back to the action8 to obtain a 3d massive YM action

S =

∫

d3x tr

[

− k2

32π2v2

n
∑

l=1

(

F (+)(2l−1)
µν

)2
+

n
∑

l,l′=1

A(+)(2l−1)
µ Mll′A

(+)(2l′−1)µ

]

,(3.15)

8 As described at the end of the previous section, this substitution of the classical equation of motion of

the auxiliary fields can be justified at the quantum level. In the path-integral formalism, first one shifts the

auxiliary field A(−) by the amount (3.14) to absorb the CS terms, and then can integrate out this shifted

auxiliary field because it is decoupled from the rest. The resultant action is the same as (3.15).
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with M = M (+). By virtue of (3.14), the three kinds of terms are neglected safely due to

the order estimation:

ṽ2(A(−))2 ∼ ṽ2v−4(F (+))2 ≪ v−2(F (+))2, ṽ2A(−)A(+) ∼ ṽ2v−2A(+)F (+),

(A(−))3 ∼ v−6(F (+))3. (3.16)

3.2.2 The second step: 3d YM → 4d YM

The 3d massive YM action (3.15) which we obtained is, in fact, the one used for decon-

struction [15]. So, in the limit n → ∞, the action (3.15) becomes a 4d YM action. In the

following we will demonstrate this explicitly, in a self-contained manner. In section 3.3 we

will treat generic values of v and ṽ, where the complete action is different from (3.15) and

so needs explicit formulas of deconstruction for the analysis.9

To clarify the physical meaning of the action (3.15), let us diagonalize its mass term.

The mass spectrum can be seen in the eigenvalues of the mass matrix M (+). It is well known

that the shift matrix can be diagonalized to a clock matrix Ω̃ ≡ diag(q, q2, · · · , qn−1, 1),

with q ≡ exp[2πi/n]. So the eigenvalues of Λ are

λl = 2 − (ql + q−l) = 2 − 2 cos

(

2πl

n

)

(3.17)

where l = [n/2]−n+1, · · · ,−1, 0, 1, · · · , [n/2] (the range of l is shifted for later convenience).

More precisely, there exists an orthogonal matrix O with which we redefine the gauge

fields as

A(+)(2l−1)
µ =

√
nOl

l′Â
(+)(l′)
µ . (3.18)

The inclusion of the front factor
√

n is for our later convenience. Then the diagonalized

mass matrix is

OTM (+)O = diag(λ[n/2]−n, · · · , λ−1, λ0, λ1, · · · , λ[n/2]). (3.19)

In the limit n → ∞, this mass formula around the massless level becomes

λs = (2sπ/n)2 (−∞ < s < ∞, s ∈ Z). (3.20)

the action (3.15) can readily be rewritten as

S =

∫

d3x tr

[

− nk2

32π2v2
L̂kin − 4ṽ2n

∑

s∈Z

(sπ

n

)2
(Â(+)(s)

µ )2
]

, (3.21)

9 Note that deconstruction is, in the limit n → ∞, the same as Taylor’s field theoretical T-duality,

essentially (see appendix A). This is because the orbifold action creating the quiver can be identified as a

circle compactification action. The Taylor’s T-duality mainly concentrates on the scalar part of the theory

while deconstruction treats mostly the gauge field part instead. In this paper we give the details for the

gauge field part of the action and deconstruction. The scalar part should be straightforwardly incorporated

in the same manner.
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with

L̂kin ≡
∑

s

(∂µÂ(+)(s)
ν − ∂νÂ(+)(s)

µ )2 (3.22)

+2i
√

n
∑

s,s′,s′′,s′′′

Os
s′O

s
s′′O

s
s′′′(∂µÂ(+)(s′)

ν − ∂νÂ
(+)(s′)
µ )[Â(+)(s′′)µ, Â(+)(s′′′)ν ]

−n
∑

s,s′,s′′,s′′′,s′′′′

Os
s′O

s
s′′O

s
s′′′O

s
s′′′′ [Â

(+)(s′)
µ , Â(+)(s′′)

ν ][Â(+)(s′′′)µ, Â(+)(s′′′′)ν ].

Let us show the final result (3.21) signifies the appearance of a bunch of D3-branes at low

energy, i.e. a YM action in 4 dimensions compactified on a circle. The gauge kinetic term

of the 4d YM action is

c

∫

d3xdτ trF 2
MN , FMN ≡ ∂MAN − ∂NAM + i[AM , AN ]. (3.23)

The indices run for 4 dimensional coordinates, M,N = 0, 1, 2, τ . The Kaluza-Klein (KK)

reduction on the S1 parameterized by τ can be achieved by Fourier decomposition

Aµ(x, τ) =

∞
∑

s=−∞

eisτ/RB(s)
µ (x). (3.24)

The radius of the circle is R. For simplicity, we neglect the scalar field Aτ . Substituting

this decomposition back to the YM action (3.23) and integrating it over τ , we obtain

2πRc

∫

d3x tr

[

Lkin + 2
∞
∑

s=−∞

( s

R

)2
B(s)

µ B(−s)µ

]

, (3.25)

with

Lkin ≡
∑

s

(∂µB(s)
ν − ∂νB(s)

µ )(∂µB(−s)
ν − ∂νB

(−s)
µ )

+2i
∑

s′+s′′+s′′′=0

(∂µB(s′)
ν − ∂νB(s′)

µ )[B(s′′)µ, B(s′′′)ν ]

−
∑

s′+s′′+s′′′+s′′′′=0

[B(s′)
µ , B(s′′)

ν ][B(s′′′)µ, B(s′′′′)ν ]. (3.26)

Let us show that our action (3.21) is indeed equal to the KK reduced YM action (3.25),

with an appropriate choice of the overall normalization c. For the computation, we need

to use an explicit expression for the orthogonal matrix O. The eigenvectors of the matrix

Λ are

V (s) = (1, qs, q2s · · · , q(n−1)s)T/
√

n (3.27)

which are labeled by s = [n/2] − n, · · · ,−1, 0, 1, · · · , [n/2]. These vectors are orthogonal

to each other, due to qn = 1. O is formed by alignment of ortho-normal vectors. But
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vectors (3.27) are not real-valued, so in order to make a real-valued matrix O one need to

rearrange the vectors,

(

V ′(−s), V ′(s)
)

Q =
(

V (−s), V (s)
)

, Q ≡
(

i/
√

2 −i/
√

2

1/
√

2 1/
√

2

)

. (3.28)

Then, {V ′} is a set of ortho-normalized real vectors, forming the matrix O by

their alignment.

However, the vectors V are simpler than V ′, so we choose a new basis for the gauge

fields, rather than (3.18),

A(+)(2l−1)
µ ≡ √

n(OQ)ll′B
(l′)
µ . (3.29)

In comparison to our previous basis (3.18), this is equivalent to B
(0)
µ = Â

(+)(0)
µ and

B(l)
µ =

1√
2
(Â(+)(l)

µ + iÂ(+)(−l)
µ ), B(−l)

µ =
1√
2
(Â(+)(l)

µ − iÂ(+)(−l)
µ ) (l > 0). (3.30)

Then, from (3.27) and (3.28), we obtain a simple formula

√
n(OQ)ll′ = qll′ (3.31)

and can use it for evaluating L̂kin (3.22). Using the equations

∑

s,s′,s′′,s′′′

(OQ)ss′(OQ)ss′′(OQ)ss′′′ = n−3/2
∑

s′,s′′,s′′′

[n/2]
∑

s=[n/2]−n

qs(s′+s′′+s′′′)

= n−3/2

[

∑

s′+s′′+s′′′ 6=0

q([n/2]−n)(s′+s′′+s′′′) 1 − qn(s′+s′′+s′′′)

1 − qs′+s′′+s′′′
+

∑

s′+s′′+s′′′=0

n

]

= n−1/2
∑

s′+s′′+s′′′=0

1, (3.32)

∑

s,s′,s′′,s′′′

(OQ)ss′(OQ)ss′′(OQ)ss′′′(OQ)ss′′′′ = n−1
∑

s′+s′′+s′′′+s′′′′=0

1, (3.33)

where qn = 1 is taken into account, we can show

L̂kin(Â) = Lkin(B), (3.34)

i.e., the kinetic term (3.22) is equal to the KK kinetic term (3.26).10

10 The constraints appearing in the sum, s′ + s′′ + s′′′ = 0 and s′ + s′′ + s′′′ + s′′′′ = 0, can be interpreted

as a momentum conservation in the τ space. The physical reason for this is that basically the element

q = exp[2πi/n] is a generator of the clock matrix, meaning a translation to the next orbifold copy in the

covering space of the orbifold. On the other hand, in the KK expansion (3.24), the expansion unit is

exp[iτ/R] which can be written as an operator exp[iPττ ] which is a translation by the amount of τ where

Pτ is a conjugate momentum and thus generate the translation. So, it is natural to identify this translation

with the orbifold translation in the covering space, qs. Furthermore, in our limit n → ∞, the exponent

s/n of this qs = exp[2πis/n] becomes continuous, which is interpreted as τ . The sum over s means an

integration over τ . So, we understand that the basis B
(l)
µ (3.29) for the 3d quiver gauge theory is the KK

basis of the 4d YM theory, realizing an explicit deconstruction.
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Having checked the equivalent structure of the kinetic term, we proceed to determine

the coefficient c of the 4d YM action (3.23). With use of (3.30) and (3.34), our action (3.22)

is written in terms of the fields B
(s)
µ as

S = − nk2

32π2v2

∫

d3x tr

[

Lkin +
128π4v2ṽ2

k2n2

∑

s

s2
[

B(s)
µ B(−s)µ

]

]

. (3.35)

Compared with the KK reduced action (3.25), the compactification circle radius of the 4d

theory can be identified as

1

R
=

8π2vṽ

kn
. (3.36)

Furthermore, comparing the front coefficients of (3.25) and (3.35) shows

2πRc = − nk2

32π2v2
. (3.37)

This fixes the constant c, so finally we find that our action (3.15) is equal to

S = − kṽ

8πv

∫

d4x tr
[

F 2
MN

]

. (3.38)

This is a 4d YM action, with the normalization completely fixed.

The radius R of the S1 in 4 dimensions (3.36) diverges in our limit (1.2), so we recover

the full YM action in a non-compact 4d space. We have shown that the generalized ABJM

model in the limit (1.2) is equivalent to the 4d YM theory (3.38). The gauge coupling of

the 4d YM theory is given by

1

g2
YM

=
kṽ

4πv
. (3.39)

3.3 Full 4d action with θ term

The action (3.38) obtained in the previous subsection is insufficient for our purpose, since

MO duality uses arbitrary value of the gauge coupling. In this subsection we derive the 4d

theory for arbitrary values of v and ṽ. Here we quote our result in advance:

S =

∫

d4x tr

[

− kvṽ

8π(v2 + ṽ2)
F 2

MN +
kṽ2

16π(v2 + ṽ2)
ǫMNPQFMNFPQ

]

. (3.40)

Interestingly, there appears a θ term. coefficients are finite in the limit (1.2). The final

4d action (3.40) is of course consistent with the previous one (3.38) in the approximation

v ≫ ṽ.

3.3.1 YM term

Our action before assuming v ≫ ṽ is (3.8) with the mass term defined by (3.11). We shall

follow the steps developed in the previous subsection, while keeping all terms.
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The equation of motion for the auxiliary field A
(−)(2l−1)
µ is

A(−)(2l−1)
µ = − k

4π
ǫµνλ((M (−))−1)ll′F

(+)(2l′−1)νλ − 1

2
((M (−))−1(M (cross))T)ll′A

(+)(2l′−1)
µ .

(3.41)

Compared with the previous (3.14) (which is for v ≫ ṽ), we have the additional second

term in the right hand side. We substitute this back11 to the action (3.8), to obtain

S =

∫

d3x tr

[

−ηµµ′

(

k

4π
ǫµνλF

(+)(2l−1)
νλ +

1

2
A(+)(2l′−1)

µ (M (cross)) l
l′

)

((M (−))−1)ll′′

×
(

k

4π
ǫµ′ν′λ′F (+)(2l′′−1)ν′λ′

+
1

2
((M (cross))T)l

′′

l′′′A
(+)(2l′′′−1)
µ′

)

+A(+)(2l−1)
µ M

(+)
ll′ A(+)(2l′−1)µ

]

. (3.42)

This is different from (3.15) in two aspects; (i) There is a new contribution to the A(+) mass

term, coming from the first term in (3.42). (ii) The cross term in the first term in (3.42)

gives rise to a CS coupling tr[A(+)F (+)]. The first fact (i) provides a modification of the

KK mass for the YM theory (section 3.3.1), and the second fact (ii) gives rise to a θ term

in 4 dimensions (section 3.3.2).

The total mass matrix M (as defined in (3.15)) for A(+) is now

M = M (+) − 1

4
M (cross)(M (−))−1(M (cross))T. (3.43)

Noting that all M (cross), (M (cross))T and M (−) are written by Ω and Ω−1, we can change

the ordering of the multiplication as

M (cross)(M (−))−1(M (cross))T = (M (−))−1M (cross)(M (cross))T. (3.44)

Then, using a formula M (cross)(M (cross))T = 4ṽ4(4Λ − Λ2), we find that in fact the ba-

sis (3.18) can diagonalize the total mass matrix M also in the present case.

We are interested in nearly massless levels in the large n limit, so only the lowest order

in Λ is necessary. Since M (−) = −4(v2 + ṽ2) + O(Λ), we find

M = (−ṽ2)Λ − ṽ4 1

−4(v2 + ṽ2)
4Λ + O(Λ2) =

−v2ṽ2

v2 + ṽ2
Λ + O(Λ2). (3.45)

So, in the large n limit, the difference from the previous case (v ≫ ṽ) is merely the definition

of the mass matrix: M of (3.45) instead of M (+). Looking at our previous result (3.21) for

the action, we arrive at the expression after the diagonalization,

S =

∫

d3x tr

[

∑

s

−nk2

32π2(v2 + ṽ2)
L̂kin − 4

nv2ṽ2

v2 + ṽ2

∑

s

(sπ

n

)2
(Â(+)(s)

µ )2

]

. (3.46)

11 As noted before, this procedure can be justified at the quantum level.
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Note that not only the mass term but also the normalization of the kinetic term is changed

due to M (−).

Then, as before, we obtain the dual radius, which happens to be the same as (3.36).

With this, we get the 4d YM action

S =
−k2

32π2(v2 + ṽ2)

1

2πR

∫

d4x tr
[

F 2
MN

]

=
−kvṽ

8π(v2 + ṽ2)

∫

d4x tr
[

F 2
MN

]

. (3.47)

This is the first term of our full result (3.40).

3.3.2 θ term

Next, we compute the CS term coming from the cross terms in the multiplication in (3.42).

It is well-known that a dimensional reduction of a θ term in 4d YM theory is a CS term in

3 dimensions. We shall see that this extends to our case. The CS term of ours is the cross

term in (3.42),

Scross = −
∫

d3x
k

4π
ǫµνλtr

[

A(+)(2l−1)
µ (M (cross)(M (−))−1)ll′F

(+)(2l′−1)
νλ

]

. (3.48)

The matrix (M (−))−1 can be replaced by (−4(v2 + ṽ2))−1 as before, for nearly-massless

levels. However, the matrix M (cross) cannot be diagonalized by the orthogonal rotation O.

To evaluate this explicitly, again we use the basis of B
(l)
µ (3.29). We obtain

Scross =

∫

d3x
k

16π(v2+ṽ2)
ǫµνλtr

[

(OQ)ll′B
(l′)
µ M

(cross)
ll′′

(

n(OQ)l
′′

l′′′(∂νB
(l′′′)
λ − ∂λB(l′′′)

ν )

+n
√

ni(OQ)l
′′

l′′′(OQ)l
′′

l′′′′ [B
(l′′′)
ν , B

(l′′′′)
λ ]

)]

. (3.49)

Using (3.31) and M
(cross)
ij = 2ṽ2(δi+1,j − δi−1,j), we obtain

1

2ṽ2
n(OQ)ll′M

(cross)
ll′′ (OQ)l

′′

l′′′ =
∑

l′,l′′

(qll′q(l+1)l′′′ − qll′q(l−1)l′′′)

= (ql′′′ − q−l′′′)
∑

l

ql(l′+l′′′)

= (ql′′′ − q−l′′′)nδl′+l′′′,0

= −4πil′δl′+l′′′,0,

1

2ṽ2
n
√

n(OQ)ll′M
(cross)
ll′′ (OQ)l

′′

l′′′(OQ)l
′′

l′′′′ = −4πil′δl′+l′′′+l′′′′,0. (3.50)

These formulas are used to evaluate (3.49) to get

Scross = −
∫

d3x
ikṽ2

2(v2 + ṽ2)
ǫµνλ

[

∑

l′

l′tr
(

B(l′)
µ (∂νB

(−l′)
λ − ∂λB(−l′)

ν )
)

+
∑

l′+l′′′+l′′′′=0

il′tr
(

B(l′)
µ [B(l′′′)

ν , B
(l′′′′)
λ ]

)

]

.(3.51)
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If we use a partial integration and a Jacobi identity, all of these terms vanish. However, in

view of the fact that we have an infinite sum, those procedures may be invalid, so we keep

these terms.

On the other hand, the θ term in the 4d YM action is

Sθ = c′
∫

d3xdτ tr
[

FMNFPQǫMNPQ
]

. (3.52)

The Fourier decomposition (3.24) leads to

Sθ = −4c′
∫

d4x ǫµνλtr (∂τAµFνλ)

= 8πc′
∫

d3x ǫµνλ

[

− i
∑

l

l tr
(

B(l)
µ (∂νB

(−l)
λ − ∂λB(−l)

ν )
)

+
∑

l+l′+l′′=0

l tr
(

B(l)
µ [B(l′)

ν , B
(l′′)
λ ]

)

]

. (3.53)

We obtained the same structure as our cross term action (3.51). Comparing the coefficients,

we conclude that (3.51) is equal to a 4d θ term,

Scross =
kṽ2

16π(v2 + ṽ2)

∫

d4x tr
[

ǫMNPQFMNFPQ

]

. (3.54)

This is the second term of (3.40).

Together with (3.47), we have shown finally that the YM action with a θ term, (3.40),

is equivalent to our generalized ABJM action (3.1), in the limit (1.2).

3.4 Summary

The procedures we use, which were explained so far, can be understood as an equivalence

among path-integrated partition functions as follows.

∫

[

2n
∏

l=1

DA(l)

]

eiSgeneralized ABJM =

∫

[

n
∏

l=1

DA(+)(2l−1)
n
∏

l=1

DA(−)(2l−1)

]

eiSgeneralized ABJM

=

∫

[

n
∏

l=1

DA(+)(2l−1)

]

eiS3d massive YM

=

∫

[

n
∏

l=1

DÂ(+)(l)

]

eiS3d massive YM

=

∫

DA(4d) eiS4d YM . (3.55)

The first equality is just a field redefinition by a linear combination (3.7). At the second

equality, we integrated out the auxiliary fields A
(−)(2l−1)
µ . This was explained with the

substitution of the classical equation of motion (3.41), but it can be justified at the quantum

level. At the third equality, we rotate the basis of the gauge field labels as in (3.18), and
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so it is merely a linear field redefinition. At the last equality, we sum up the KK tower and

rewrite the action just in 4d terminology.

As is obvious from this equality, the generalized ABJM model (which was our starting

point) and the 4d YM theory are equivalent to each other at the quantum level. Of course

one can show this equivalence in the presense of field operators in the path integrals, so

equivalence among correlators can be shown. Note that the action is considered as a bare

action of the path-integral with an appropriate cut-off.12

4 SL(2, Z) duality

We have obtained the 4d YM theory (3.40) from the generalized ABJM model (3.1). The

4d YM action (3.40) has a complexified gauge coupling

τ =
−kṽ2

v2 + ṽ2
+ i

kvṽ

v2 + ṽ2
(4.1)

where τ is of the standard notation,

S =
−1

8π

∫

d4x tr

[

Im(τ)FMNFMN +Re(τ)
1

2
ǫMNPQFMNFPQ

]

, τ ≡ θ

2π
+

4πi

g2
YM

.

In this section, we first show that in fact from the single theory (3.1) we can obtain

infinite number of 4d YM theories (3.40) which differ in values of τ (section 4.1). This

explicitly proves equivalence between these 4d theories. Indeed we will show that all of these

theories are related to each other by SL(2,Z) transformations and the pariy transformation

(section 4.2). Finally in section 4.3, a consistent interpretation in M-theory and superstring

theory is given.

4.1 Infinitely many equivalent 4d theories

In the previous derivation, we have chosen a linear combination (3.7) of the gauge fields,

then one of the combinations become the auxiliary field A
(−)
µ and is integrated out. Note

that we may have other choice of the linear combination. In fact, for a gauge field A
(2l−1)
µ

with the CS level k, we have n choices for A
(2l′)
µ with −k, to form a linear combination.

As a typical example, let us choose the following new combination:

A(±)(2l−1)
µ ≡ 1

2
(A(2l−1)

µ ± A(2l−2)
µ ). (4.2)

Here the labels are understood with mode 2n, i.e. A(0) = A(2n), A(−1) = A(2n−1). Appar-

ently, with this new basis all the computations in the previous section can be done as well.

The only difference is the exchange of v and ṽ. In fact, with the definition (4.2), the mass

term for the gauge field is

Sscalar = −
∫

d3x

n
∑

l=1

tr

[

4ṽ2(A(−)(2l−1)
µ )2

+v2
(

(A(+)(2l−1)
µ − A(+)(2l+1)

µ ) − (A(−)(2l−1)
µ + A(−)(2l+1)

µ )
)2
]

, (4.3)

12 At this point there is a subtlety about taking the infinite cut-off limit. However, in our case the

supersymmetry of the 3d action will constrain the action and we do not expect any problem for it.
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while the CS kinetic term in (3.8) is left intact. The resultant 4d YM action has a cou-

pling constant

τ ′ =
−kv2

v2 + ṽ2
+ i

kvṽ

v2 + ṽ2
, (4.4)

which is obtained just with v ↔ ṽ on the original coupling constant (4.1).

Note that we did not modify the generalized ABJM action itself: what we changed is

just the labeling of the gauge fields. We are dealing with an identical theory. So the YM

with τ (4.1) is equivalent to the YM with τ ′ (4.4).

We may choose other combinations for the gauge fields. Next, we consider an example

A(±)(2l−1)
µ ≡ 1

2
(A(2l−1)

µ ± A(2l+2)
µ ). (4.5)

This combination provides a complicated mass term for the gauge fields. In terms of the

definition of the mass matrix (3.10), the linear combination (4.5) leads to

M (−) = −v2(1 + Ω + Ω−1) − ṽ2(21 + Ω2 + Ω−2), (4.6)

M (cross) = 2v2(Ω − Ω−1) + 2ṽ2(Ω2 − Ω−2), (4.7)

M (+) = −v2(21 − Ω − Ω−1) − ṽ2(21 − Ω2Ω−2). (4.8)

With these mass matrices, the computations presented in section 3.3 can be done quite

similarly, and we arrive at a 4d YM theory with

τ ′ =
−k(v2 + 2ṽ2)

v2 + ṽ2
+ i

kvṽ

v2 + ṽ2
. (4.9)

This theory is, again, equivalent to the YM theory with (4.1) and also to the one with (4.4).

In this manner, we can continue choosing different combinations. A generalization of

the combination (4.5) is

A(±)(2l−1)
µ ≡ 1

2
(A(2l−1)

µ ± A(2l+2m)
µ ) (4.10)

for arbitrary positive integer m (m < n), and for each choice we arrive at a different value

of τ . In the end, we obtain infinite number of various gauge coupling constants for the 4d

YM theory, all of which are equivalent. Next, let us see how these coupling constants are

related to each other.

4.2 SL(2,Z) relation

MO duality group for U(N) N = 4 YM theory is SL(2,Z), and we here show that the

relation between the original τ and the infinite variety of τ ′ is indeed given by this trans-

formation. The SL(2,Z) transformation is

τ ′ =
aτ + b

cτ + d
, ad − bc = 1, a, b, c, d ∈ Z. (4.11)

First, we consider possible relation between (4.1) and (4.9). We substitute (4.1)

and (4.4) into the above and seek for a solution for the integer set (a, b, c, d) satisfying
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ad − bc = 1. In terms of the standard notation for the generators of the SL(2,Z) group:

the shift operation T (τ) = τ + 1 and the inversion S(τ) = −τ−1, we find

τ ′ = τ − k = T−k(τ). (4.12)

So, the choice (4.5) of the linear combination for the gauge fields realizes the T -

transformation of the SL(2,Z) group. This is quite interesting and encouraging: The

different pairing of the CS gauge fields results in an SL(2,Z)-transformed complexified

gauge coupling!13

Any realization of the T -transformation in the SL(2,Z) group is nontrivial. It is often

stated in literature that T -transformation is trivial because one can easily see the invariance

of the partition function under the transformation: the θ term couples to the instanton

number which is quntized, so the T shift of the θ angle changes the value of the action by

2π which leaves any path integration invariant. However, to the best of our knowledge,

nobody has realized this shift by a transformation of the fields. Our method concretely

realizes this transformation of the fields, as a change of the pairings of the CS gauge fields

in the KK-reduced 3 dimensions.

Then how about the S-transformation which is more interesting in the MO duality?

For this, let us look at a relation between (4.1) and (4.4). In fact, there is a solution for

(a, b, c, d) for k = 1 and k = 2,

(a, b, c, d) = (−1,−1, 2, 1) (for k = 1) (4.13)

(a, b, c, d) = (−1,−2, 1, 1) (for k = 2) (4.14)

which is equivalent to

τ ′ = S(T 2(S(T (τ)))) (for k = 1) (4.15)

τ ′ = T−1(S(T (τ))) (for k = 2) (4.16)

Note that these include the inversion S.

With these facts presented, can we claim that MO duality is proved? The answer

is NO. Note that our coupling constant (4.1) is not generic. It is parameterized by one

real parameter v/ṽ, so the 4d YM theory we obtained probes only a small portion of the

fundamental domain of SL(2,Z). We find that this is fatal in respect of the MO duality.

It turns out that a combination of (4.15) (or (4.16)) with the other one (4.12) is equivalent

to a parity transformation in 4 dimensions. In fact, the combination leads to14

τ ′ =
kṽ2

v2 + ṽ2
+ i

kvṽ

v2 + ṽ2
(4.17)

13Although the T -transformation is a generic symmetry of the gauge theory, we stress that the M-theory

torus and its SL(2, Z) group action is behind our realization of the T -transformation.
14More precisely, this τ ′ can be obtained by considering a linear combination basis A

(±)(2l−1)
µ ≡ 1

2
(A

(2l)
µ ±

A
(2l+1)
µ ). With this choice, previous computations can be performed only with the exchange of k → −k.

In this paper we have assumed that k is positive. If we allow for arbitrary sign for k, then our formula for

τ (4.1) is τ = (−kṽ2 + i|kvṽ|)/(v2 + ṽ2). So the change of the sign of k flips the sign of the real part of τ .
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which is only different in the sign of the θ, compared to the original τ (4.1). This is a

parity transformation in 4 dimensions.

Note that this τ ′ can also be represented as a combination of S- and T -transformations.

In other words, the S-transformation (4.15) or (4.16) which we realized by a totally field-

theoretical argument for a proof of MO duality can also be obtained by a parity transfor-

mation in 4 dimensions.

Our one-parameter family of τ lies on parts of the boundary of the fundamental domain

of SL(2,Z) (we choose a conventional definition of the fundamental domain). The parts

of the boundaries are identified by some of the SL(2,Z) transformations, and in our case

eventually this transformation can also be understood as a parity transformation. This is a

peculiarity of our coupling constant (4.1). For generic values of the gauge coupling constant,

the parity transformation would not be equivalent to any SL(2,Z) transformation.15

We present another fact. In (4.15) and (4.16) we have chosen k = 1, 2. However, with

other choice of the value of k, we cannot find SL(2,Z) transformation τ → τ ′. On the

other hand, if we allow the parity transformation, τ and τ ′ can be related for any k. Even

though we can choose arbitrary k for giving infinite variety of the values of the coupling

constant τ via the CS pairings, this fact suggests that we had better understand this τ ′ as

a parity, rather than S-transformation, generically.16

4.3 M-theory interpretation

In this paper, so far, we have used only traditional techniques of field theories, and haven’t

used any technologies of string theory and M-theory. But the reason why we got a particular

value of τ (4.1) will be clear once string theory interpretation is used, as we will see.

As described in the introduction, τ can be identified with the torus modulus τ for the

compactification of 11-dimensional M-theory. We made this torus by turning on the scalar

vevs v and ṽ and taking the limit (1.2). The modulus of the torus is associated with the

scalar vevs through the orbifolding action which can be seen in the moduli space of multiple

M2-branes.

In our case, the orbifold charge acting on the four complex scalar fields is (see case II

of [10] or [11])

(

1

kn
,− 1

kn
,− 1

kn
,

1

kn

)

,

(

0, 0,
1

n
,− 1

n

)

. (4.18)

This means that the identification is

(z1, w1, z2, w2) ∼ (e2πi/knz1, e
−2πi/knw1, e

−2πi/knz2, e
2πi/knw2)

∼ (z1, w1, e
2πi/nz2, e

−2πi/nw2). (4.19)

15 The conventional choice of the fundamental domain is defined by a region in τ complex plane given by

|τ | ≥ 1, −1/2 ≤ Reτ ≤ 1/2 and Imτ > 0. If we consider the parity as well as SL(2, Z), the whole moduli

space of the 4d YM theory is a half of the fundamental domain defined above; one needs to further restrict

it to the region Reτ ≥ 0. In this moduli space, our coupling constant τ lies on fixed lines of the “parity +

SL(2, Z)” duality group.
16 Although this choice of k = 1, 2 is special in the sense that it leads to the full supersymmetry N = 8

in 3 dimensions for the original ABJM model (see [6]).
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Im z2

Im z1

~v1

~v2

Figure 2. Transverse torus made by the limiting orbifold.

We turned on a vev for the scalar field corresponding to the first and the third entries. The

torus cycles are defined by the circles made by the limit of the orbifold. The vector that

defines the cycles of the torus can be read from the vev vector (z1, w1, z2, w2) = (v, 0, ṽ, 0)

and the orbifold charge (4.18). For the second charge vector in (4.18), it is obvious that

the torus cycle direction is (see (A.4) in the appendix for an explicit relation between the

standard circle compactification and a scaling limit of an orbifold)

~v2 ≡ (0, 0, 2πiṽ/n, 0). (4.20)

In the same manner, from the first vector in (4.18), another cycle vector of the torus is

~v1 ≡ (2πiv/kn, 0,−2πiṽ/kn, 0). (4.21)

Therefore, defining a complex coordinate made out of the imaginary parts of the first first

C and the third C, we can write the vectors ~v1,2 giving the cycles of the torus in terms of

a complex coordinate (spanned by imaginary parts of the first and the third C),

v1 = 2π

(

v

kn
− i

ṽ

kn

)

, v2 = 2πi
ṽ

n
. (4.22)

See figure 2. The size of the torus shrinks to zero in the limit (1.2), while the complex

structure of the torus made of these two vectors is finite,

τ = v2/v1 =
−kṽ2

v2 + ṽ2
+ i

kvṽ

v2 + ṽ2
. (4.23)

So, in the limit (1.2), M-theory is compactified on a shrinking torus transverse to the

M2-branes, with the above τ .

Also, via duality chains, M2-branes transverse to this torus will ultimately become

N D3-branes with the background axio-dilaton τ . Therefore, our previous result, (3.40),

which has the same τ (4.1), is consistent with this M-theory interpretation. In other words,

we find that our resultant action (3.40) is consistent with the moduli space analyzed by [10]

and [11].
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5 Conclusion and discussion

From the 3d CS-matter theory we constructed the 4d N = 4 U(N) supersymmetric

Yang-Mills theory. This provides explicit T -transformations of the SL(2, Z) duality for

the 4d theory.

This utilizes two field theory techniques. One is deconstruction [15] (or equivalently

Taylor’s field-theoretical T-duality [14]), which relates a 3d YM and a 4d YM (see sec-

tion 3.2.2). The other is new, under which a 3d superconformal CS-matter theory is

Higgsed to a 3d YM [5, 7] (see section 2.2 and section 3.2.1). Equipped with the two, we

are able to transform the 3d CS-matter theory into the 4d YM (whose action is obtained

in (3.40)) at the lagrangian level. Roughly speaking, the T-duality involves a scalar vev ṽ,

while another scalar vev v triggers the new duality a la Mukhi et al.

We showed that a “reparameterization invariance”, which is nothing but the relabel-

ing of gauge fields, in the CS-matter theory corresponds to the T -transformation of the

resultant 4d YM. One reparameterization which amounts to exchanging v and ṽ is indeed

an S-transformation of the SL(2, Z) MO duality in 4d YM. However, in our restricted

fundamental domain, the S-transformation here can also be achieved by a 4d parity and

T -transformations, so it is not a strong-weak duality.

At first glance, our procedures are classical, but integrating out the auxiliary fields can

be justified at the quantum level, so our equivalence among 4d YM theories with various

values of the coupling constant is a quantum equivalence.

We believe that, since our method indeed realizes a part of the SL(2,Z) duality man-

ifest from the M-theory viewpoint, it could be generalized further including S-duality,

possibly by investigating membrane actions in M-theory further. One may feel that the

T -transformations, which we reaized in this work, are trivial, as T -invariance can be easily

seen in the path-integral formalism. However, there are two reasons why we think our

results for the T -transformations nontrivial. First, we acheived the shift of the θ angle,

not by hand, but by explicit redefinition/integration of fields. Second, when the spacetime

has a boundary, instanton numbers in 4d is not quantized, thus the T -transformation,

which changes the action, is quite nontrivial. Our procedure can work even for spacetimes

with boundaries.

Unlike electric-magnetic (EM) duality in abelian case, which relies on introducing a

lagrange multiplier for the Bianchi identity (see [16] for abelian Born-Infeld actions), in our

case, the proof involves the novel Higgs mechanism. This is because in order to promote the

3d theory to 4d the infinite KK tower of massive gauge modes is necessary. Since ABJM

model has an explicit stringy setup regardless of the gauge group rank, it is interesting to see

how the abelian EM duality using the lagrange multiplier can be consistently understood

from the viewpoint of our derivation.

In addition, the torus we made is somewhat artificial due to our specific choice of moduli

points such that C4/(ZA ×ZB) reduces to C2/(ZA ×ZB). This moduli space is similar to

a β-deformed C2 without B-field and dilaton. As discussed in [17], supported by the very

B-field, D3-branes puff up into toroidal D5-branes wrapping a fuzzy two torus, known as

Myers effect. Since our torus contains the M-circle, a codimension two object is absent.
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Let us end this section with some comments. One is about the non-locality of the

duality. This involves operations like 9-11 flip in M-theory. As claimed by Susskind [18],

in the context of Matrix theory, the origin of MO duality can be traced to the interplay

between circles in strongly-coupled 11 dimensions. It would be interesting to find a possible

relation to that.

In our derivation so far, we have not dealt with scalars and fermions. Fermionic sector

is in particular important to see that the resultant 4d action has N = 4 supersymmetries.

In appendix B, we study the fermionic sector and show that indeed we obtain N = 4 SYM.

The important fact is that supersymmetries are enhanced from the original 8 supercharges

in the generalized ABJM model to 16 supercharges of the 4d N = 4 SYM. This is a

consequence of the scaling limit.

So far our derivation is for a one-parameter family within the fundamental domain of

τ . The possibility to find moduli spaces which exhibit other quiver diagrams may shed

new light on rendering a full τ for exploring MO duality. This remains as an important

future work.
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A Taylor’s T-duality and orbifold

The Taylor’s field theory T-duality is for a circle compactification, while ours makes use of

a scaling limit of an orbifold. In the limit (1.2), we expect that the circle compactification

emerges. We shall see in this appendix that in fact this emergence can be seen in the

orbifolding action.

First, note that the 3d YM action (3.15) can be thought of as a standard quiver YM

theory with a vev of all the bi-fundamental scalar fields. The mass term in (3.15) can be

written as

Smass = −
∫

d3x tr[A(+)
µ ,Ωṽ]2, A(+)

µ ≡ diag(A(+)(1)
µ , A(+)(3)

µ , A(+)(5)
µ , · · · ). (A.1)

The part Ωṽ can be thought of as a vev of a certain complex scalar field in adjoint repre-

sentation, which we call Φ, that is, 〈Φ〉 = Ωṽ. This scalar field of the size nN × nN , after

the following orbifold projection

Ω̃ΦΩ̃† = e2πi/nΦ (A.2)

with the clock matrix Ω̃, has components allowed only for nonzero components of Ω. This

results in bi-fundamental matters in the quiver YM theory [12]. We turned on a vev ṽ for
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all the nonzero components of Φ, that is the interpretation of the mass term (A.1). This

is the standard orbifolding for YM theory. Note that this orbifolding can be thought of as

the orbifolding for the CS gauge fields of the ABJM model of [10] (see also [13]). So the

emergence of the orbifold structure in (3.15) is quite natural.

Let us see that this interpretation of the theory (3.15) indeed shows the equivalence

to the circle compactification. We consider a field expanded around its expectation value:

Φ = Ωṽ + Re(δΦ) + i Im(δΦ). (A.3)

Then, we take a limit ṽ, n → ∞ while ṽ/n fixed. The orbifold action (A.2) reduces to

Ω̃ [Re(δΦ)] Ω̃† = ReδΦ, Ω̃ [Im(δΦ)] Ω̃† = ImδΦ + 2π
ṽ

n
. (A.4)

This is precisely the discrete action of a circle compactification. Note that the standard

discrete action uses the shift matrix Ω instead of the clock matrix Ω̃, but this difference is

merely a convention of the basis of the matrices. The discrete action on a YM theory (with

adjoint scalar fields) was studied by Taylor [14] to show the T-duality concretely in terms

of field theories. The YM theory divided by the action (A.4) is shown to be equivalent

to a YM theory in a spacetime with one dimension higher, compactified on an S1 circle.

Therefore, in our case, we conclude that our action (3.15) is equal to the 4d YM action

compactified on an S1.

B Fermionic sector and N = 4 SUSY in 4d

In this appendix, we show that the 4-dimensional Yang-Mills action which we derived

indeed has the expected maximal N = 4 supersymmetries in 4 dimensions.

The generalized ABJM action [9–11] in section 3 has 8 supercharges (N = 4 super-

symmetries in 3 dimensions). The vacuum expectation values (3.6) do not break these

supersymmetries. In the 4-dimensional terminology, these 8 supercharges correspond to

N = 2 supersymmetries in 4 dimensions. Now, we note the following fact: in 4 dimensions,

N = 2 supersymmetric gauge theory with 4 massless adjoint fermions is in fact N = 4

supersymmetric Yang-Mills theory. Therefore, in order to show that our 4-dimensional

Yang-Mills action has N = 4 supersymmetries, we only need to show that, after the de-

construction, we have 4 massless adjoint fermions in 4 dimensions.

In the following, we shall show that this is indeed the case. Let us consider the fermion

sector of the ABJM model,

S =

∫

d3x
[

Lferm
kin − V ferm

D − V ferm
F

]

, (B.1)

Lferm
kin ≡ Tr

[

iζ†γµDµζ + iω†γµDµω
]

, (B.2)
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V ferm
D ≡ 2πi

k
Tr
[(

ζ†AζA − ωAω†A
)(

Z†
BZB − WBW †B

)

−
(

ζAζ†A − ω†AωA

)(

ZBZ†
B − W †BWB

)]

+
4πi

k
Tr
[(

Z†
AζA − ωAW †A

)(

ζ†BZB − WBω†B
)

−
(

ζAZ†
A − W †AωA

)(

ZBζ†B − ω†BWB

)]

, (B.3)

V ferm
F ≡ 2π

k
ǫACǫBDTr

[

2ζAWBZCωD + 2ζAωBZCWD + ZAωBZCWD + ζAWBζCWD

]

+
2π

k
ǫACǫBDTr

[

2ζ†AW †BZ†
Cω†D + 2ζ†Aω†BZ†

CW †D

+Z†
Aω†DZ†

Cω†D + ζ†AW †Bζ†CW †D
]

.

Here A,B = 1, 2 are indices for doublets in SU(2) R-symmetry. For the generalized ABJM

model [9–11] which we used in section 3, we just need to follow the orbifolding procedures

of Douglas and Moore [12]: First generalize the matrix size from N ×N to nN × nN , and

then restrict the matrix elements so that they satisfy the orbifold constraint. Concretely

speaking, we substitute the following expression to the above lagrangian:

Z1 = vΩn×n ⊗ 1N×N , Z2 = ṽ1n×n ⊗ 1N×N , W 1 = W 2 = 0. (B.4)

This is the same as (3.6). As for the fermions, we label them as

ζ1 =















0 ζ(3)

0 0 ζ(5)

. . .

0 0 0 ζ(2n−1)

ζ(1) 0 0















, ω1 =















0 0 ω(1)

ω(3) 0

0 ω(5) 0

. . .

0 0 ω(2n−1) 0















,

ζ2 = diag(ζ(2), ζ(4), · · · , ζ(2n)), ω2 = diag(ω(2), ω(4), · · · , ω(2n)). (B.5)

Each ζ(t) and ω(t) (t = 1, 2, · · · , 2n) are N × N matrices. Substituting these matrices to

the potentials, we obtain, for the ζ sector,

V ferm
D + V ferm

F =
4πi

k
vṽ
∑

t,t′

ζ(t)
(

Ω2n×2n − Ω−1
2n×2n

)

tt′
ζ(t′)∗ + c.c. (B.6)

The size of this shift matrix Ω is 2n × 2n (on the other hand the shift matrix used in

section 3 has the size n × n). ω sector has precisely the same form, and is decoupled from

the ζ sector.

We diagonalize the mass term (B.6). The diagonalization formula obtained by replacing

n in (3.50) by 2n is

(

Ω2n×2n − Ω−1
2n×2n

)

tt′
→
(

qt′/2 − q−t′/2
)

δt+t′,0 (B.7)

with q ≡ exp[2πi/n]. In the large n limit, this simplifies to

(

qt′/2 − q−t′/2
)

δt+t′,0 → −2πi

n
t δt+t′,0 +

−2πi

n
(n − t) δt+t′,0 (B.8)
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as we look at modes close to the zero mode. Note that in the present case there is the

second term, the almost massless modes around t ∼ n.17 In the large n limit, the sector

t ∼ 0 decouples from the other sector t ∼ n, so, as a consequence, we obtain two towers

of massive states. These towers corrrespond to ζ1 and ζ2 because the projection onto ζ1,

i.e. diag(1, 0, 1, 0, · · · , 1, 0), commutes with Ω − Ω−1. Therefore, in the diagonal basis, we

obtain two sets of mass terms

8π2vṽ

kn

∑

t

(

ζ(t)tζ(−t)∗ + ζ(t−n)(t − n)ζ(−t+n)∗
)

+ c.c. (B.9)

This is nothing but a KK mass tower of two 4-dimensional massless fermions compactified

on a circle with the radius

R =
kn

8π2vṽ
. (B.10)

This radius is in exact agreement with the radius obtained in the analysis of the gauge

sector, (3.36). Together with the ω sector which produces two 4-dimensional massless

fermions in precisely the same manner, we obtain four massless fermions in 4 dimensions.

All of these fermions are in the adjoint representation of the gauge group in 4 dimen-

sions. This can be seen as follows. In order to find the representation of the fermion, it is

enough to see how the fermions are transformed under the global part of the gauge trans-

formation in 4 dimensions. Among the KK gauge fields B
(s)
µ in 3 dimensions, the massless

one B
(0)
µ is relevant to the global part of the gauge transformation. One can see from (3.29)

that this massless mode is made of a linear combination of A
(+)(2l−1)
µ with equal weight.

In other words, the first column of the matrix O is proportional to a vector (1, 1, 1, · · · ).
This means that, the global transformation corresponds to a simultaneous rotation of all

U(N)’s by an equal angle. That is, the global transformation of the 4-dimensional Yang-

Mills theory is the global part of the overall U(N) of the original U(N)2n gauge group in

3 dimensions. Under this overall rotation in the generalized ABJM model, all fermions are

transformed as the adjoint representation. Therefore, our 4-dimensional fermions are in

the adjoint representation.
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